Simulation apps provide multidisciplinary teams with a competitive edge in race to deliver 5G, IoT solutions
BURLINGTON, Mass., 24 May 2016. COMSOL, a provider of multiphysics modeling, simulation, and application design software, is at the International Microwave Symposium (IMS) announcing support for application development that furthers work toward 5G and the Internet of Things (IoT). The COMSOL Multiphysics software and its Application Builder provides simulation experts with tools to turn detailed physics and mathematical models into simulation apps. “We wanted to show designers how easy it is to build a customized easy-to-use interface based on their detailed model in order to let anyone in product development test different operating conditions and configurations,” says Jiyoun Munn, technical product manager of the RF Module at COMSOL.
The app created with COMSOL Multiphysics simulates a single slot-coupled microstrip patch antenna fabricated on a multilayered, low-temperature co-fired ceramic (LTCC) substrate. Users may control inputs such as properties of a single antenna and array geometry. Results show the far-field radiation pattern of the antenna array and its directivity.
As engineers work toward 5G and the Internet of Things (IoT), designers of RF and microwave devices will benefit from multiphysics modeling and simulation of antennas and circuits, not limited to RF and microwaves but extending to the range of millimeter waves and Terahertz. The latest release of the RF Module in COMSOL Multiphysics comes with several application examples that allow COMSOL software users to run, inspect, and use the apps – allowing them to see how straightforward it is to turn their model into a custom application, officials say.
Of interest to antenna designers is the Slot-Coupled Microstrip Patch Antenna Array Synthesizer demo app, pictured here. It simulates an FEM model of a device that is fabricated on a multilayered low temperature co-fired ceramic (LTCC) substrate, and extends the results to the user-specified array configuration.
The results include S-parameter, electric field distribution on each layer, far-field radiation pattern of the antenna array, and its directivity. The far-field radiation pattern is calculated by multiplying the array factor and the single antenna radiation pattern to perform an efficient far-field analysis without simulating a complicated full array model, allowing the app user to independently obtain their simulation results within seconds. “Given how competitive the race is to deliver the best 5G solutions, building simulation apps for an entire team will allow designers to share their expertise easily and free up resources to develop new concepts,” Munn adds.
Using COMSOL Multiphysics, microwave and RF designers can couple electromagnetic simulations with heat transfer, structural mechanics, fluid flow, and other physical phenomena, allowing them to represent coupled physics effects as they would occur in the real world. That means being able to accurately investigate designs and fully benefit from the virtual prototyping capabilities COMSOL offers.
The upcoming version of the RF Module, which is scheduled to be released shortly after the International Microwave Symposium (IMS) 2016, strengthens its design and test feasibility by including new tutorial models such as a log-periodic antenna for EMI/EMC Testing, and a signal integrity (SI) and time-domain reflectometry (TDR) analysis of adjacent microstrip lines. The Application Libraries also include detailed model examples guiding users to perform very fast prototyping with high accuracy through reduced-order model simulation techniques based on asymptotic waveform evaluation (AWE) and frequency-domain modal methods.
COMSOL is a global provider of simulation software for product design and research to technical enterprises, research labs, and universities. Its COMSOL Multiphysics product is an integrated software environment for creating physics-based models and simulation apps. A particular strength is its ability to account for coupled or multiphysics phenomena. Add-on products expand the simulation platform for electrical, mechanical, fluid flow, and chemical applications. Interfacing tools enable the integration of COMSOL Multiphysics simulations with all major technical computing and CAD tools on the CAE market. Simulation experts rely on the COMSOL Server product to deploy apps to their design teams, manufacturing departments, test laboratories, and customers throughout the world. Founded in 1986, COMSOL employs more than 400 people in 22 offices worldwide and extends its reach with a network of distributors.
You might also like:
Subscribe today to receive all the latest aerospace technology and engineering news, delivered directly to your e-mail inbox twice a week (Tuesdays and Thursdays). Sign upfor your free subscription to the Intelligent Inbox e-newsletter at http://www.intelligent-aerospace.com/subscribe.html.
Connecmct with Intelligent Aerospace on social media: Twitter (@IntelligentAero), LinkedIn,Google+, and Instagram.
Intelligent Aerospace
Global Aerospace Technology NetworkIntelligent Aerospace, the global aerospace technology network, reports on the latest tools, technologies, and trends of vital importance to aerospace professionals involved in air traffic control, airport operations, satellites and space, and commercial and military avionics on fixed-wing, rotor-wing, and unmanned aircraft throughout the world.
Courtney E. Howard | Chief Editor, Intelligent Aerospace
Courtney enjoys writing about all things high-tech in PennWell’s burgeoning Aerospace and Defense Group, which encompasses Intelligent Aerospace and Military & Aerospace Electronics. She’s also a self-proclaimed social-media maven, mil-aero nerd, and avid avionics and space geek. Connect with Courtney at [email protected], @coho on Twitter, on LinkedIn, and on Google+.