Four companies now in place for DARPA program to develop precision micro-gyro sensor for smart munitions

May 27, 2011
ARLINGTON, Va., 27 May 2011. Navigation and guidance researchers at the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., have chosen four technology companies so far for a project to develop a miniature gyroscope for smart munitions, ships, vehicles, aircraft, and infantry soldiers. DARPA awarded contracts to the Charles Stark Draper Laboratory in Cambridge, Mass., and at the Systron Donner Inertial segment of Custom Sensors & Technologies (CST) in Concord, Calif., this week to participate in the Microscale Rate Integrating Gyroscope (MRIG) program.

ARLINGTON, Va., 27 May 2011. Navigation and guidance researchers at the U.S. Defense Advanced Research Projects Agency (DARPA) in Arlington, Va., have chosen four technology companies so far for a project to develop a miniature gyroscope for smart munitions, ships, vehicles, aircraft, and infantry soldiers. DARPA awarded contracts to the Charles Stark Draper Laboratory in Cambridge, Mass., and at the Systron Donner Inertial segment of Custom Sensors & Technologies (CST) in Concord, Calif., this week to participate in the Microscale Rate Integrating Gyroscope (MRIG) program.DARPA announced contracts to the Charles Stark Draper Laboratory in Cambridge, Mass., and at the Systron Donner Inertial segment of Custom Sensors & Technologies (CST) in Concord, Calif., this week to participate in the Microscale Rate Integrating Gyroscope (MRIG) program. The Draper Lab and Systron Donner join the Northrop Grumman Corp. Electronic Systems segment in Woodland Hills, Calif., and Honeywell Aerospace Microelectronics & Precision Sensors segment in Plymouth, Minn., as MRIG contractors.DARPA awarded a $5.5 million contract to the Draper Lab, and a $2.6 million contract to Systron Donner under that company's BEI Sensors & Systems brand to develop a micro-sensor vibrating-structure gyroscope to measure rotation over a wide range of dynamic conditions. Honeywell and Northrop Grumman won MRIG contracts last March.

DARPA is asking microelectronics experts at the four companies to develop the micro-scale gyro for single-chip inertial navigation and guidance systems that operate independently of the satellite-based Global Positioning System (GPS) or any other external signals for uncompromised navigation and guidance.

A vibrating-structure gyroscope operates on the principle that a vibrating object tends to keep vibrating in the same plane as its support is rotated. It is less complex and more affordable to design and build than is a conventional rotating gyroscope of similar accuracy.

DARPA scientists are asking Draper, Systron Donner, Northrop Grumman, and Honeywell to develop these kinds of micro sensors as crucial parts of advanced inertial measurement units, and small enough for guided munitions, hand-held devices, and add-in portable guidance, navigation, and control units.

Researchers at the four companies will develop micro-gyros that are not influenced by the kinds of mechanical shocks, temperatures, vibrations, spin rates, and accelerations commonly found in guided munitions. Devices the companies will develop and prototype are expected to operate on no more power than a few tens of milliwatts.

The DARPA MRIG program seeks to create a vibratory gyroscope that measures the angle of rotation in a way that the gyros can extend their dynamic range, as well as eliminate the need for integrating angular rate information. The overall goal is to eliminate an accumulation of errors due to numerical and electronic integration.

DARPA scientists are asking the companies to develop isotropic two-degree-of-freedom resonators -- especially microscopic 3-D shell resonators -- which are spheres, wine-glass shaped structures, or any spatially distributed shells with an axis of symmetry.

Rate integrating gyroscopes have high dynamic range, accuracy due to direct measurement of the angle of rotation, and ability to operate interchangeably in the whole angle and angular rate modes, DARPA experts point out.

The four companies have substantial challenges ahead, as rate integrating gyroscope technology has never been demonstrated on the microscale level. Rate integrating gyroscope miniaturization would offer the potential for developing an inertial navigation system for spin-stabilized missiles, pointing technology for high-G munitions, and azimuth-based target mapping.

For more information contact the Draper Lab online at www.draper.com, Systron Donner Inertial at www.systron.com, Northrop Grumman Electronic Systems online at www.es.northropgrumman.com, Honeywell Aerospace Microelectronics & Precision Sensors (formerly the Honeywell Solid-State Electronics Center) at www.ssec.honeywell.com, or DARPA at www.darpa.mil.

About the Author

John Keller | Editor

John Keller is editor-in-chief of Military & Aerospace Electronics magazine, which provides extensive coverage and analysis of enabling electronic and optoelectronic technologies in military, space, and commercial aviation applications. A member of the Military & Aerospace Electronics staff since the magazine's founding in 1989, Mr. Keller took over as chief editor in 1995.

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!