by John Rhea
FORT BELVOIR, Va. - In their ongoing struggle with the problem of diminishing manufacturing sources (DMS), defense officials are increasingly turning to a form of reverse engineering known as emulation. This approach will get the semiconductor parts they need for aging weapon systems - even for such new programs as the U.S. Air Force`s F-22 Raptor air superiority fighter, which is not yet in full production.
Gregory Saunders, the director of the Defense Standardization Office, who sounded an alarm over the dimensions of the DMS problem during his keynote speech at the COTScon `98 in May, says emulation isn`t DOD`s first choice, but it beats the even more expensive approaches of redesigning systems or replacing entire boards. There are other ways, but they also carry disadvantages. Stocking parts in advance for the lifetime of a weapon system is a dicey matter at best and requires informed judgments as early as possible in the lifecycle. Another option is the "trailing edge" suppliers of microcircuits, such as Lansdale Semiconductor in Tempe, Ariz., and Rochester Electronics of Newburyport, Mass. Saunders cautions, however, that using trailing-edge tech- nology can run from "as little as 50 percent more [than the original parts] and as high as five to eight times as much."
Emulation is just one of the tools in DOD`s tool kit to try to breathe life into obsolete parts, and defense officials are taking a bicoastal approach with an in-house operation and a contractor-operated one-stop semiconductor shopping center. The West Coast in-house operation, which Saunders says specializes in "onsey, twosey" jobs, is the Defense Microelectronics Activity (DMEA) at McClellan Air Force Base, Calif. DMEA, which had long been the Air Force`s listening post to stay abreast of the latest developments in Silicon Valley, was on the Base Realignment and Closure, or BRAC, hit list, but it was rescued two years ago and turned into a tri-service fabless semiconductor house to respond to special needs.
In a parallel action on the East Coast, DOD officials have funded Sarnoff Corp. of Princeton, N.J., for what is known as the Generalized Emulation of Microcircuits, or GEM, program for the high-volume requirements. GEM started in 1988 as a research and development effort involving the 1.5-micron feature size BiCMOS process and is currently a tri-service initiative of the Defense Logistics Agency (DLA) contracted through the Defense Supply Center Columbus (DSCC), Columbus, Ohio.
Sarnoff got its first Qualified Manufacturers List (QML) certification from DSCC in 1996 and is scheduled to have full QML certification in place this month. However, the GEM program has already yielded a total of more than 350,000 parts for such aging programs as the Navy`s AN/UYK-44 standard shipboard computer, NASA`s space shuttle, the Air Force`s F-15 fighter, and the Army`s PRC-70 mobile radios.
The coordinating point for these efforts is Saunders`s office, which recently transferred from the Office of the Secretary of Defense to DLA to serve as the executive agent. The move was a lateral one, Saunders says, "without prejudice or reduction in numbers" of personnel. "There`s not a lot of political-level intervention," Saunders says in explaining the shift, and the office essentially deals with technical matters and works directly with the services.
Those up the line at the Office of the Undersecretary of Defense for Acquisition and Technology deal with the policy issues. DLA is now essentially divided into two wings, the Defense Contract Management Command and the Defense Logistics Support Command, and the standardization office is under the latter along with the various defense supply centers around the country.
Reverse engineering is a well-established practice in the semiconductor industry for companies to try to catch up with and surpass their rivals, and the DOD emulation effort benefits from some of those techniques. "All of this predated the Perry initiative [former Defense Secretary William Perry`s call for maximum use of commercial off-the-shelf (COTS) technology] and is an outgrowth of the way technology developed," Saunders continues. Nor is the DMS problem confined to the military. "Boeing and Lockheed Martin have exactly the same problems with their commercial aircraft," he points out.
The list of parts that the emulators produce, particularly under Sarnoff`s GEM effort, is a nostalgia trip for Silicon Valley veterans and must be a mystery for anyone who received an electrical engineering degree within the past decade: resistor-transistor logic, diode-transistor logic, transistor-transistor logic, emitter-coupled logic, and P-channel MOS.
Sarnoff alone has emulated more than 200 different designs within the government-owned library, and DMEA has designed operational amplifiers, voltage references, and phase-locked loops for fabrication by the specialty shops that abound around Silicon Valley. Another specialty at DMEA is hybrid devices, sometimes produced in lots as small as five or ten units and up to 100.
Occasionally, the emulators get lucky and actually drive down the prices of devices. One A-D converter chip for a Navy application was running $1,100 apiece from the commercial supplier before it bailed out of the business, but DMEA designers now have prototypes that they expect to cost $700. That number may drop even further if the part achieves sufficient volume.
Nonetheless, emulation remains, in Saunders`s words, "not the preferred option," but it will have to be one of the options until the magic day when all military systems can be designed with open-system architectures able to accommodate microcircuits not even dreamed about today. In the meantime, business couldn`t be better for Sarnoff and DMEA.