Marine Corps prepares to build lot-seven CH-53K King Stallion heavy-lift helicopters and avionics systems

Dec. 10, 2021
The CH-53K King Stallion is a large cargo helicopter designed to move Marines and their equipment from Navy assault ships onto attack beaches.

PATUXENT RIVER NAS, Md. – Engineers at Sikorsky Aircraft Corp. in Stratford, Conn., are preparing to build new CH-53K King Stallion heavy-lift helicopters and integrated avionics systems for the U.S. Marine Corps under terms of a $35.3 million order announced Monday.

Officials of the U.S. Naval Air Systems Command at Patuxent River Naval Air Station, Md., are asking Sikorsky, a Lockheed Martin company, to procure long-lead items for lot-seven CH-53K helicopters.

Long-lead items either are difficult and time-consuming to obtain, and are funded early in the aircraft design process to keep overall production on schedule. Contracts to build the actual helicopters will come later.

The CH-53K King Stallion is a large cargo helicopter designed to replace the Marine Corps fleet of CH-53E heavy-lift helicopters to help move Marines and their equipment from ships offshore onto attack beaches. The CH-53K is a general redesign of the CH-53E.

Related: Sikorsky makes preparations to build nine new CH-53K heavy-lift helicopters and avionics for U.S. Marines

The CH-53K sea-based, long range, helicopter is designed to provide three times the lift capability of its predecessor. The CH-53K will conduct expeditionary heavy-lift transport of armored vehicles, equipment, and personnel to support distributed operations deep inland from a sea-based center of operations, Sikorsky officials say. It can lift more than 18 tons.

The CH-53K will have new engines and cockpit avionics layout, and will have more than twice the lift capacity and combat radius of the CH-53E. A wider cargo hold to enable the new aircraft to carry a light combat vehicle internally, and will have new composite rotor blades. It will use the General Electric GE38-1B engine.

It can operate at high altitudes, hot temperatures, and in degraded visual conditions; sling load 36,000 pounds; can fly faster than 200 knots; can make 60-degree-angle bank turns; can climb to 18,500 feet above sea level; conduct 12-degree slope landings and takeoffs; and can auto-jettison external loads, and survive gunfire.

Related: Army orders five rebuilt Boeing CH-47F Chinook heavy-lift helicopters and avionics in $391.4 million deal

The CH-53K first flew in late 2015, and the helicopter was introduced to Marine Corps squadrons in 2018. The Marines plan to buy 227 CH-53K helicopters for about $23.3 billion.

The Raytheon Technologies Corp. Collins Aerospace segment in Cedar Rapids, Iowa, is providing the CH-53K's avionics management system; Sanmina-SCI Corp. in San Jose, Calif., is providing the new helicopter's intercommunications System; and Spirit AeroSystems in Wichita, Kan., is providing the CH-53 cockpit and cabin. Other major subcontractors are GKN Aerospace in Redditch, England; and Onboard Systems International in Vancouver, Wash.

Collins Aerospace is providing the company's Common Avionics Architecture System (CAAS) for the CH-53K. The CAAS integrates several communications, navigation and mission subsystems through its Flight2 system. It uses common reusable processing elements in an open-systems architecture based on commercial standards.

Related: Boeing to build another six special forces MH-47G twin-rotor heavy-lift helicopters in $212.6 million order

The Collins Aerospace CAAS avionics initially was developed for the Special Operations Forces' MH-47 and MH-60 helicopter fleets. In addition to the CH-53K, CAAS avionics also has been selected for the CH-47F, MH-60T, MH-65E, and VH-60N aircraft.

The Sanmina-SCI FireComm Intercommunications Control System for the CH-53K uses digital processing techniques and controls. Its system architecture uses the MIL-STD-1553 avionics data bus; the IEEE 1394b data bus; 10/100 Base-T Ethernet; and TIA/EIA-485 interface ports.

On this order Sikorsky will do the work in Stratford, Conn., and should be finished by December 2022. For more information contact Sikorsky Aircraft online at www.lockheedmartin.com/en-us/capabilities/sikorsky.html, or Naval Air Systems Command at www.navair.navy.mil.

About the Author

John Keller | Editor-in-Chief

John Keller is the Editor-in-Chief, Military & Aerospace Electronics Magazine--provides extensive coverage and analysis of enabling electronics and optoelectronic technologies in military, space and commercial aviation applications. John has been a member of the Military & Aerospace Electronics staff since 1989 and chief editor since 1995.

Voice your opinion!

To join the conversation, and become an exclusive member of Military Aerospace, create an account today!